Загрузка страницы

ORPO: Monolithic Preference Optimization without Reference Model (Paper Explained)

Paper: https://arxiv.org/abs/2403.07691

Abstract:
While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we study the crucial role of SFT within the context of preference alignment, emphasizing that a minor penalty for the disfavored generation style is sufficient for preference-aligned SFT. Building on this foundation, we introduce a straightforward and innovative reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the necessity for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across the diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval2.0 (Figure 1), 66.19% on IFEval (instruction-level loose, Table 6), and 7.32 in MT-Bench (Figure 12). We release code and model checkpoints for Mistral-ORPO-α (7B) and Mistral-ORPO-β (7B).

Authors: Jiwoo Hong, Noah Lee, James Thorne

Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://ykilcher.com/discord
LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Видео ORPO: Monolithic Preference Optimization without Reference Model (Paper Explained) канала Yannic Kilcher
Показать
Комментарии отсутствуют
Введите заголовок:

Введите адрес ссылки:

Введите адрес видео с YouTube:

Зарегистрируйтесь или войдите с
Информация о видео
1 мая 2024 г. 20:03:14
00:33:26
Другие видео канала
WHO ARE YOU? 10k Subscribers Special (w/ Channel Analytics)WHO ARE YOU? 10k Subscribers Special (w/ Channel Analytics)Datasets for Data-Driven Reinforcement LearningDatasets for Data-Driven Reinforcement LearningReinforcement Learning with Augmented Data (Paper Explained)Reinforcement Learning with Augmented Data (Paper Explained)The Odds are Odd: A Statistical Test for Detecting Adversarial ExamplesThe Odds are Odd: A Statistical Test for Detecting Adversarial ExamplesAMP: Adversarial Motion Priors for Stylized Physics-Based Character Control (Paper Explained)AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control (Paper Explained)Expire-Span: Not All Memories are Created Equal: Learning to Forget by Expiring (Paper Explained)Expire-Span: Not All Memories are Created Equal: Learning to Forget by Expiring (Paper Explained)REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)[Classic] Playing Atari with Deep Reinforcement Learning (Paper Explained)[Classic] Playing Atari with Deep Reinforcement Learning (Paper Explained)Symbolic Knowledge Distillation: from General Language Models to Commonsense Models (Explained)Symbolic Knowledge Distillation: from General Language Models to Commonsense Models (Explained)Gradient Origin Networks (Paper Explained w/ Live Coding)Gradient Origin Networks (Paper Explained w/ Live Coding)Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)ALiBi - Train Short, Test Long: Attention with linear biases enables input length extrapolationALiBi - Train Short, Test Long: Attention with linear biases enables input length extrapolationListening to You! - Channel Update (Author Interviews)Listening to You! - Channel Update (Author Interviews)[ML News] Uber: Deep Learning for ETA | MuZero Video Compression  | Block-NeRF | EfficientNet-X[ML News] Uber: Deep Learning for ETA | MuZero Video Compression | Block-NeRF | EfficientNet-XOn the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)Growing Neural Cellular AutomataGrowing Neural Cellular Automata[ML News] DeepMind's Flamingo Image-Text model | Locked-Image Tuning | Jurassic X & MRKL[ML News] DeepMind's Flamingo Image-Text model | Locked-Image Tuning | Jurassic X & MRKLAvoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)
Яндекс.Метрика