A structured self-attentive sentence embedding
A structured self-attentive sentence embedding
Lin, Feng, Santos, Yu, Xiang, Zhou and Bengio
Abstract
This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.
Видео A structured self-attentive sentence embedding канала Statistical Machine Learning
Lin, Feng, Santos, Yu, Xiang, Zhou and Bengio
Abstract
This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.
Видео A structured self-attentive sentence embedding канала Statistical Machine Learning
Комментарии отсутствуют
Информация о видео
22 апреля 2025 г. 0:37:49
00:17:47
Другие видео канала