Загрузка...

Expedited Data Analysis (EDA) & Feature Engineering Tutorial | Real-World E-Commerce Case Study

In this session, we dive deep into Expedited Data Analysis (EDA) and Feature Engineering using a real-world e-commerce dataset (pet products sales). Learn how to uncover patterns, detect anomalies, handle missing values, and engineer features for machine learning.

🔹 Key Topics Covered:
✅ Why EDA? – Understanding data patterns, outliers, and stakeholder questions
✅ Handling Missing Values – Mean/mode imputation, ML-based imputation (Random Forest)
✅ Outlier Detection – Z-score, IQR, and visualization (box plots)
✅ Feature Engineering – Categorical encoding, binning, interaction terms
✅ Real Case Study – Customer churn prediction, sales analysis, and business insights

📊 Tools Used: Python (Pandas, NumPy, Matplotlib, Seaborn), Scikit-learn

📂 Dataset: E-commerce pet product sales (7,400+ customers, 26 features)

👉 Next Session: Lakshmirena will cover text data analysis – stay tuned!

📢 Subscribe for more data science tutorials!

Follow us on:
- Instagram : https://www.instagram.com/kkrgenaiinnovations/
- Facebook: https://www.facebook.com/kkrgenaiinnovations
- Linkedin: https://www.linkedin.com/company/kkr-genai-innovations/
- X : https://x.com/kkr_genai_

Join Our Community: https://chat.whatsapp.com/EXaIc6WZRjmFAFmgxOHP9f

Generative AI

KKR Gen Ai Innovations

#aiproductivity #aicontentcreation #genaitraining #aiforbeginners #learnai #AICourse#datascience #EDA #featureengineering #machinelearning #python #dataanalysis #Pandas #datavisualization #realworlddata #ChurnPrediction #OutlierDetection #datacleaning #ai #ml

Видео Expedited Data Analysis (EDA) & Feature Engineering Tutorial | Real-World E-Commerce Case Study канала KKRGENAI Innovations
Страницу в закладки Мои закладки
Все заметки Новая заметка Страницу в заметки

На информационно-развлекательном портале SALDA.WS применяются cookie-файлы. Нажимая кнопку Принять, вы подтверждаете свое согласие на их использование.

Об использовании CookiesПринять