Expedited Data Analysis (EDA) & Feature Engineering Tutorial | Real-World E-Commerce Case Study
In this session, we dive deep into Expedited Data Analysis (EDA) and Feature Engineering using a real-world e-commerce dataset (pet products sales). Learn how to uncover patterns, detect anomalies, handle missing values, and engineer features for machine learning.
🔹 Key Topics Covered:
✅ Why EDA? – Understanding data patterns, outliers, and stakeholder questions
✅ Handling Missing Values – Mean/mode imputation, ML-based imputation (Random Forest)
✅ Outlier Detection – Z-score, IQR, and visualization (box plots)
✅ Feature Engineering – Categorical encoding, binning, interaction terms
✅ Real Case Study – Customer churn prediction, sales analysis, and business insights
📊 Tools Used: Python (Pandas, NumPy, Matplotlib, Seaborn), Scikit-learn
📂 Dataset: E-commerce pet product sales (7,400+ customers, 26 features)
👉 Next Session: Lakshmirena will cover text data analysis – stay tuned!
📢 Subscribe for more data science tutorials!
Follow us on:
- Instagram : https://www.instagram.com/kkrgenaiinnovations/
- Facebook: https://www.facebook.com/kkrgenaiinnovations
- Linkedin: https://www.linkedin.com/company/kkr-genai-innovations/
- X : https://x.com/kkr_genai_
Join Our Community: https://chat.whatsapp.com/EXaIc6WZRjmFAFmgxOHP9f
Generative AI
KKR Gen Ai Innovations
#aiproductivity #aicontentcreation #genaitraining #aiforbeginners #learnai #AICourse#datascience #EDA #featureengineering #machinelearning #python #dataanalysis #Pandas #datavisualization #realworlddata #ChurnPrediction #OutlierDetection #datacleaning #ai #ml
Видео Expedited Data Analysis (EDA) & Feature Engineering Tutorial | Real-World E-Commerce Case Study канала KKRGENAI Innovations
🔹 Key Topics Covered:
✅ Why EDA? – Understanding data patterns, outliers, and stakeholder questions
✅ Handling Missing Values – Mean/mode imputation, ML-based imputation (Random Forest)
✅ Outlier Detection – Z-score, IQR, and visualization (box plots)
✅ Feature Engineering – Categorical encoding, binning, interaction terms
✅ Real Case Study – Customer churn prediction, sales analysis, and business insights
📊 Tools Used: Python (Pandas, NumPy, Matplotlib, Seaborn), Scikit-learn
📂 Dataset: E-commerce pet product sales (7,400+ customers, 26 features)
👉 Next Session: Lakshmirena will cover text data analysis – stay tuned!
📢 Subscribe for more data science tutorials!
Follow us on:
- Instagram : https://www.instagram.com/kkrgenaiinnovations/
- Facebook: https://www.facebook.com/kkrgenaiinnovations
- Linkedin: https://www.linkedin.com/company/kkr-genai-innovations/
- X : https://x.com/kkr_genai_
Join Our Community: https://chat.whatsapp.com/EXaIc6WZRjmFAFmgxOHP9f
Generative AI
KKR Gen Ai Innovations
#aiproductivity #aicontentcreation #genaitraining #aiforbeginners #learnai #AICourse#datascience #EDA #featureengineering #machinelearning #python #dataanalysis #Pandas #datavisualization #realworlddata #ChurnPrediction #OutlierDetection #datacleaning #ai #ml
Видео Expedited Data Analysis (EDA) & Feature Engineering Tutorial | Real-World E-Commerce Case Study канала KKRGENAI Innovations
generative ai learn generative ai prompt engineering chatgpt tutorial ai tools ai for beginners ai course openai artificial intelligence no code ai Expedited Data Analysis EDA tutorial Feature Engineering Data Science tutorial Machine Learning preprocessing Python data analysis Real-world data science Customer churn prediction E-commerce data analysis Outlier detection techniques
Комментарии отсутствуют
Информация о видео
22 мая 2025 г. 13:33:39
00:44:59
Другие видео канала