Python Interview Questions: Quilt, Arrow Datasets, Gradio, Great Expectations & Seldon Core! #Python
1️⃣ Quilt (quilt3)
Quilt lets you treat data like code, creating versioned data packages stored on AWS S3 with immutable hashes, inline documentation, and automated workflows
Typical workflow:
pip install quilt3
quilt3 init
quilt3 add data/raw.csv
quilt3 push my-org/my-dataset
quilt3 install my-org/my-dataset
2️⃣ Apache Arrow Datasets (pyarrow.dataset)
The Arrow Datasets API provides a unified interface for reading Parquet, CSV, and other formats with zero-copy partition pruning, predicate pushdown, and column projection
Example:
import pyarrow.dataset as ds
dataset = ds.dataset("data/*.parquet", format="parquet")
table = dataset.to_table(columns=["user_id", "amount"], filter=ds.field("amount") v 100)
df = table.to_pandas()
3️⃣ Gradio
Gradio lets you wrap any Python function (e.g., a model’s predict) into a web UI with inputs, outputs, and hosting in 3 lines of code
Example:
import gradio as gr
def predict(text):
return {"positive": 0.8, "negative": 0.2}
demo = gr.Interface(fn=predict, inputs="text", outputs="label")
demo.launch()
4️⃣ Great Expectations
Great Expectations enables declarative assertions (“expectations”) on your data, automated profiling, and beautiful HTML reports for CI/CD pipelines
Example:
from great_expectations.dataset import PandasDataset
import pandas as pd
df = pd.read_csv("data.csv")
gd = PandasDataset(df)
gd.expect_column_values_to_not_be_null("id")
gd.expect_column_mean_to_be_between("amount", 50, 500)
results = gd.validate()
5️⃣ Seldon Core Python SDK
Seldon Core’s Python client lets you package models into Docker images via S2I, deploy them on Kubernetes, and interact via REST/gRPC for testing
Example (client call):
from seldon_core.seldon_client import SeldonClient
sc = SeldonClient()
response = sc.predict(
deployment_name="my-model",
data=[[5.1, 3.5, 1.4, 0.2]],
namespace="default"
)
print(response.response["data"]["ndarray"])
Видео Python Interview Questions: Quilt, Arrow Datasets, Gradio, Great Expectations & Seldon Core! #Python канала CodeVisium
Quilt lets you treat data like code, creating versioned data packages stored on AWS S3 with immutable hashes, inline documentation, and automated workflows
Typical workflow:
pip install quilt3
quilt3 init
quilt3 add data/raw.csv
quilt3 push my-org/my-dataset
quilt3 install my-org/my-dataset
2️⃣ Apache Arrow Datasets (pyarrow.dataset)
The Arrow Datasets API provides a unified interface for reading Parquet, CSV, and other formats with zero-copy partition pruning, predicate pushdown, and column projection
Example:
import pyarrow.dataset as ds
dataset = ds.dataset("data/*.parquet", format="parquet")
table = dataset.to_table(columns=["user_id", "amount"], filter=ds.field("amount") v 100)
df = table.to_pandas()
3️⃣ Gradio
Gradio lets you wrap any Python function (e.g., a model’s predict) into a web UI with inputs, outputs, and hosting in 3 lines of code
Example:
import gradio as gr
def predict(text):
return {"positive": 0.8, "negative": 0.2}
demo = gr.Interface(fn=predict, inputs="text", outputs="label")
demo.launch()
4️⃣ Great Expectations
Great Expectations enables declarative assertions (“expectations”) on your data, automated profiling, and beautiful HTML reports for CI/CD pipelines
Example:
from great_expectations.dataset import PandasDataset
import pandas as pd
df = pd.read_csv("data.csv")
gd = PandasDataset(df)
gd.expect_column_values_to_not_be_null("id")
gd.expect_column_mean_to_be_between("amount", 50, 500)
results = gd.validate()
5️⃣ Seldon Core Python SDK
Seldon Core’s Python client lets you package models into Docker images via S2I, deploy them on Kubernetes, and interact via REST/gRPC for testing
Example (client call):
from seldon_core.seldon_client import SeldonClient
sc = SeldonClient()
response = sc.predict(
deployment_name="my-model",
data=[[5.1, 3.5, 1.4, 0.2]],
namespace="default"
)
print(response.response["data"]["ndarray"])
Видео Python Interview Questions: Quilt, Arrow Datasets, Gradio, Great Expectations & Seldon Core! #Python канала CodeVisium
Комментарии отсутствуют
Информация о видео
14 мая 2025 г. 22:50:50
00:00:10
Другие видео канала